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HOW TO DISCOVER THE ROGERS–RAMUNUJAN IDENTITIES

GAURAV BHATNAGAR

Abstract. We examine a method to conjecture two very famous identities
that were conjectured by Ramanujan, and later found to be known to Rogers.

1. Introduction

The so-called Rogers–Ramunujan identities were sent by Ramanujan to Hardy
nearly 100 years ago. In the next few years, the identities were circulated amongst
mathematicians, but nobody, including Ramanujan, was able to prove them. Then
one day, while ri✏ing through old back copies of a journal, Ramanujan himself
discovered them in an obscure paper written in 1894 by the English mathematician
Rogers. This spurred both Rogers and Ramanujan to provide simpler proofs of the
identities, that were published in 1919.
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About these Hardy [6, p. xxxiv] remarked:

It would be di�cult to find more beautiful formulae than the “Rogers–
Ramunujan” identities . . .

The purpose of this article is to introduce you to the Rogers–Ramunujan identi-
ties, by discussing an approach to discover them. When you see that they appear
from a very simple generalization of the simplest possible infinite continued frac-
tion, that in turn is related to the celebrated Fibonacci sequence, perhaps you may
begin to agree with Hardy’s opinion of these formulas.
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–G.H. Hardy

“It would be difficult to find more beautiful formulae than the Rogers-
Ramanujan identities…” 
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–G. H. Hardy, about Ramanujan

“He worked, far more than a majority of modern mathematicians, by 
induction from numerical examples.” 
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