RAMANUJAN EXPLAINED

Lectures by Gaurav Bhatnagar

Lecture I:

How to discover the Rogers-Ramanujan identities

THE ROGERS-RAMANUJAN IDENTITIES

$$
\begin{aligned}
1+ & \frac{q}{(1-q)}+\frac{q^{4}}{(1-q)\left(1-q^{2}\right)}+\frac{q^{9}}{(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right)}+\cdots \\
& =\frac{1}{(1-q)\left(1-q^{6}\right)\left(1-q^{11}\right)\left(1-q^{16}\right) \cdots} \times \frac{1}{\left(1-q^{4}\right)\left(1-q^{9}\right)\left(1-q^{14}\right) \cdots} \\
1+ & \frac{q^{2}}{(1-q)}+\frac{q^{6}}{(1-q)\left(1-q^{2}\right)}+\frac{q^{12}}{(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right)}+\cdots \\
& =\frac{1}{\left(1-q^{2}\right)\left(1-q^{7}\right)\left(1-q^{12}\right)\left(1-q^{17}\right) \cdots} \times \frac{1}{\left(1-q^{3}\right)\left(1-q^{8}\right)\left(1-q^{13}\right) \cdots}
\end{aligned}
$$

"It would be difficult to find more beautiful formulae than the RogersRamanujan identities..."

-G.H. Hardy

$$
\sum_{k=1}^{\infty} \frac{q^{k^{2}}}{(1-q)-\left(1-q^{k}\right)}=\frac{\infty}{\prod_{1}} \frac{1}{\left(1-q^{5 k+1}\right)\left(1-q^{5 k+4}\right)}
$$

How do wi melu sease of this?
1 - Fand pwor seris in q
2 - Ae anelytic identities

$$
\begin{aligned}
& \text { Df } \mathbb{I}\left[[[]]=\left\{\sum_{k=1}^{\infty} a_{k} q^{k} \mid a_{k} \in \mathbb{C}\right\}\right. \\
& \text { - } \sum a_{n} q^{k}=\sum b_{k} q^{k} \quad \text { of } a_{k}=b_{k} \text { furauk } k=0,1, \ldots
\end{aligned}
$$

$$
\begin{aligned}
& c_{k}=a_{k} b_{0}+a_{k-1} b_{1}+\cdots+a_{0} b_{k} \leftarrow \text { Candy purdud- } \\
& \text { - } 1
\end{aligned}
$$

- $C \sum a_{k} k \varepsilon^{k}=\sum c a_{k} \varepsilon^{k} \quad$ (scealammitiplicetion) V.S. + ring $=$ olgeren.

Inverses WC un Gecometere series

$$
(1-q)^{-1}=\frac{1}{1-q}=1+\varepsilon+\varepsilon^{2}+\cdots
$$

parog: (FPS) $(1-q)\left(1+\varepsilon+\tau^{2}+\cdots\right) \stackrel{?}{=} 1+0 q+0 q^{2}+\cdots$

$$
\begin{aligned}
& \text { Croftg } q^{0}: 11=1 \\
& \left.\begin{array}{c}
q:-1+1=0 \\
q^{2}:-1+1=0 \\
\vdots \\
q^{n}
\end{array}\right\} \text { metch the RHS }
\end{aligned}
$$

In general $f(\varepsilon), f(0) \neq 0$,

$$
\begin{aligned}
\frac{1}{f\left(a_{)}\right.} & =\frac{1}{a_{0}+a_{1} q+\cdots \quad a_{0} \neq 0} \\
& =\frac{1}{a_{0}}\left(\frac{1}{1-\frac{(-q)}{a_{0}}} \overline{\left(a_{0}+a_{2} q+\cdots\right)}\right. \\
& =\frac{1}{a_{0}}\left(1+\frac{(-q)}{a_{0}}\left(a_{1}+c_{2} q+\cdots\right)+\frac{(-q)^{2}}{a_{0}^{2}}\left(a_{1}+a_{2}+\cdot\right)^{2}\right.
\end{aligned}
$$

Calalah corficients $d q^{n}$ is doable, a fint piress
for any n. for any n. So $f(a)^{-1}$ exita in FPS (parndided $f(0) \neq 0)$.

$$
\left.\sum \frac{q^{k^{2}}}{(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{k}\right)}=\sum_{k} \quad q^{k^{2}}\left(1+q 1 r^{2}+\ldots\right)\left(1+q^{2}+q^{4}+\cdots\right)\right) \quad \begin{aligned}
& \left(1+q^{k}+q^{2 k}+\cdots\right)
\end{aligned}
$$

i-prinuph, you cen celcalele \sum^{n} formy n.

$$
\begin{aligned}
\prod_{k=1}^{\infty} \frac{1}{\left(1-q^{5 k+1}\right)\left(1-q^{5 k+4}\right)} & =\frac{1}{(1-q)\left(1-q^{6}\right)\left(1-q^{11}\right) \ldots \frac{1}{\left(1-q^{4}\right)\left(1-q^{q}\right) \ldots}} \\
& =\left(1+q+\tau^{2}+\cdots\right)\left(1+q^{6}+\cdots\right)
\end{aligned}
$$

Bolt sodes cante intuputed as FPS.
Use sage: www.segemethorg
excuases: FPS calciation can be donen Soge.
The simplest continued frechim

$$
\begin{array}{ll}
1+\frac{1}{1+\frac{1}{1+}} \begin{array}{ll}
1+\frac{1}{1+\ldots} & 1+\frac{1}{1}=2 \\
& 1+\frac{1}{1+\frac{1}{1}}=1+\frac{1}{2}=3 / 2 \\
& 1+\frac{1}{1+\frac{1}{1+\frac{1}{1}}}=1+\frac{1}{3 / 2}=1+2 / 3=5 / 3
\end{array} \quad . \quad l
\end{array}
$$

$$
\begin{aligned}
& \omega_{n}=1+\frac{1}{\omega_{n-1}} \rightarrow \frac{F_{n}}{F_{n-1}}=1+\frac{F_{n-2}}{F_{n-1}} \\
& \omega_{n}=\frac{F_{n}}{F_{n-1}} \quad \Rightarrow F_{n}=F_{n-1}+F_{n-2} \quad \text { (3term reconucu relelin) }
\end{aligned}
$$

$\left.F_{0}=1, F_{1}=1,2,3,5,8,1\right], 21, \ldots$ Fibmecci Sequend

Whet did Ramannjon do

$$
\begin{aligned}
& 1+\frac{1}{1+\frac{1}{1+} \ldots} \quad \longrightarrow \quad 1+\frac{q}{1+\frac{q^{2}}{1+\frac{\varepsilon^{2}}{1+\varepsilon^{4} p}}} 1 \\
& \text { "q-arelojues" }
\end{aligned}
$$

Simplest q-aneloue

$$
\begin{aligned}
& 1+1+\cdots+1=n \\
& 1+\varepsilon+\ldots+i^{n-1}=\frac{1-2^{n}}{1-q}<\text { Germelue }
\end{aligned}
$$

1

$$
1+2
$$

$$
1+\frac{q}{1+\varepsilon^{2}}=\frac{1+q+q^{2}}{1+q^{2}}
$$

$$
\begin{aligned}
& c(z)=1+\frac{q^{z}}{1+\frac{\varepsilon^{2} z}{1+}} \\
& c(z)=1+\frac{\varepsilon}{c(z \varepsilon)}
\end{aligned}
$$

$1+\frac{q}{1+\frac{q^{2}}{1+q^{3}}}$
some moxe algebie sujgento $C(z)=\frac{H(z)}{H\left(z_{\varepsilon}\right)}$

$$
\begin{align*}
& \frac{H(z)}{H(z q)}=1+\frac{2 z H\left(z q^{2}\right)}{H(z q)} \\
\Rightarrow & H(z)=H(z q)+\left\{z H\left(z q^{2}\right)\right. \tag{*-x}
\end{align*}
$$

Assum $H(z)=\sum_{k=1}^{\infty} a_{k} z^{k}, p \operatorname{lng}$ in (x)

$$
\sum_{k=1}^{\infty} a_{k} z^{k}=\sum_{k=1}^{k=1} a_{k} q^{k} z^{k}+q z \sum_{k=1}^{\infty} a_{k} q^{2 k} z^{k}
$$

compare coff $刀 z^{k}: \quad a_{k}=a_{k} q^{k}+a_{k-1} q^{2 k-2+1} \Rightarrow \quad a_{k}\left(1-q^{k}\right)=a_{k-1} q^{2 k-1}$

$$
\begin{aligned}
a_{k}\left(1-q^{k}\right) & =a_{k-1} q^{2 k-1} \\
a_{1} & =a_{k-1} \frac{q^{2 k-1}}{1-q^{k}} \\
& =a_{k-2} \frac{q^{2 k-1+2 k-3}}{\left(1-q^{k}\right)\left(1-q^{k-1}\right)} \\
& =\vdots \\
& =a_{0} \frac{q^{1+3+5+\cdots+2 k-1}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{k}\right)} \\
& =a_{0} \frac{q^{k^{2}}}{(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{k}\right)}
\end{aligned}
$$

Produd-side.
Recell porg I Geomeliz sum.

$$
\begin{aligned}
S & =\underbrace{1+q+q^{2}++q^{n-1}} \\
S(1-q) & =1-q+\varepsilon(1-q)+\cdots+\varepsilon^{n-1}(1-\varepsilon) \\
& =1-R+q+\text { higher powens } q \\
& =1+\operatorname{lugh} \text { purus of } q
\end{aligned}
$$

Morel of stony
$S=1+\{+h i j h e n$ porves
$S(1-q)=1+$ higher poores...
Some notection a-risingfectorial

$$
\begin{aligned}
& (A ; q)_{n}=\left\{\begin{array}{l}
1 \quad y n=0 \\
(1-A)(1-A \varepsilon) \cdot\left(1-A q^{n-1}\right), n>0 \\
\infty
\end{array}\right. \\
& (A ; \tau)_{\infty}:=\begin{array}{l}
\prod_{K \rightarrow 1}\left(1-A q^{k}\right) \leftarrow \text { as FPs } \quad \text { as anelyticul objut }
\end{array} \\
& \text { carvengenu } \rightarrow|q|<1
\end{aligned}
$$

Ex: (1) Work out Productside gRRZ
(2) $J(s)=\frac{1}{1}+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\cdots$ di same trick to chrcover. Eden's purduct fonula for zeta furction

RR1 $\sum_{k=1}^{\infty} \frac{q^{k^{2}}}{\left(\varepsilon ; \varepsilon_{k}\right.}=\frac{1}{\left(\varepsilon ; v^{5}\right)_{\infty}} \frac{1}{\left(\varepsilon^{4} ; \varepsilon^{5}\right)_{\infty}},|\varepsilon|<1$
\&RI $\sum_{k=0}^{\infty} \frac{q^{k^{2}+k}}{(\varepsilon i \varepsilon)_{k}}=\frac{1}{\left(\varepsilon^{2} ; \tau^{5}\right)_{n}} \frac{\left(\varepsilon^{3} j \varepsilon^{5}\right)_{\infty}}{}$

Goals 1. (Re) ougevise the Notebolus I Remanuyon / Beindt Rameny an's NRebod!
2 Explair the idutitis/thms, if porible find how smeome Loet Notebrels can dis cove.
3 Founs on techrigues that work in mary contexts
4. Give beclypond whon neided
\leadsto undugred enel
5 Giver notsos
6. Execuers so you can bein the techiniuns and $g^{\text {in }}$ bemilianty with the x nesults

THE ROGERS-RAMANUJAN IDENTITIES

$$
\begin{aligned}
1+ & \frac{q}{(1-q)}+\frac{q^{4}}{(1-q)\left(1-q^{2}\right)}+\frac{q^{9}}{(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right)}+\cdots \\
& =\frac{1}{(1-q)\left(1-q^{6}\right)\left(1-q^{11}\right)\left(1-q^{16}\right) \cdots} \times \frac{1}{\left(1-q^{4}\right)\left(1-q^{9}\right)\left(1-q^{14}\right) \cdots} \\
1+ & \frac{q^{2}}{(1-q)}+\frac{q^{6}}{(1-q)\left(1-q^{2}\right)}+\frac{q^{12}}{(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right)}+\cdots \\
& =\frac{1}{\left(1-q^{2}\right)\left(1-q^{7}\right)\left(1-q^{12}\right)\left(1-q^{17}\right) \cdots} \times \frac{1}{\left(1-q^{3}\right)\left(1-q^{8}\right)\left(1-q^{13}\right) \cdots}
\end{aligned}
$$

"He worked, far more than a majority of modern mathematicians, by induction from numerical examples."

-G. H. Hardy, about Ramanujan

RAMANUJAN EXPLAINED

Lectures by Gaurav Bhatnagar

Lecture I:

How to discover the Rogers-Ramanujan identities

