RAMANUJAN EXPLAINED

Lectures by Gaurav Bhatnagar

Lecture II: The q-binomial Theorem

THE q-BINOMIA LTHEOREM

$$
\frac{(-b ; q)_{\infty}}{(a ; q)_{\infty}}=\sum_{k=0}^{\infty} \frac{(-b / a ; q)_{k}}{(q ; q)_{k}} a^{k}
$$

Notation: q-misy factorials

$$
\begin{aligned}
& (a ; q)_{0}:=1 \\
& (a ; q)_{k}:=\underbrace{(1-a)(1-a q) \cdots\left(1-c q^{k-1}\right)}_{k-t u m s}
\end{aligned}
$$

$$
=\prod_{j=0}^{k-1}\left(1-a q^{j}\right)^{k \text {-terms }} \quad \text { the "base" }
$$

$$
(a ; \varepsilon)_{\infty}:=\prod_{j=0}^{j=0}\left(1-a q^{j}\right) \quad \leftarrow \text { as a FPS } \quad \text { in } q
$$

Pasty: deferred

Renenly

$$
\begin{aligned}
& \text { Remenly } \\
& \frac{(a ; \varepsilon)_{\infty}}{\left(a q^{k ; i)_{\infty}}\right.}=\prod_{j=0}^{k-1}\left(1-a q^{j}\right)=(c ; \varepsilon)_{k} \\
& \text { if } k \text { is not a non-mgetive intyen, we can use } \\
& \text { 2. } \quad \lim _{q \rightarrow 1}(a j \varepsilon)_{k}=\lim _{q \rightarrow 1} \prod_{i=0}^{k-1}\left(1-a q^{j}\right)=(1-c)^{k} \\
& \text { So } \lim _{q \rightarrow 1} \frac{(a ; i)_{\infty}}{\left(a_{q}^{k} ; \tau\right)_{q}}=(1-a)^{k}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Facts look at }
\end{aligned}
$$

Ramanujan's III 16.1 (i)

$\lim _{q \rightarrow 1} \frac{(\varepsilon ; \varepsilon)_{\infty}}{\left(a q^{x} ; \varepsilon\right)_{\infty}}=(1-a)^{x}$
3. $|a|<1$, the RHS can be expanded uni y
the binomial thurem
4. $\lim _{q \rightarrow 1} \frac{\left(q^{a} ; \varepsilon\right)_{k}}{(1-q)^{k}}=\lim _{q \rightarrow 1} \frac{\left(1-q^{a}\right)\left(1-q^{a+1}\right) \cdots\left(1-q^{a+k-1}\right)}{(1-\varepsilon)(1-\varepsilon) \cdots(1-\varepsilon)}$

$$
=a(a+1) \cdots(a+k-1)
$$

(a) $k<$ rising fectuiel

No $(1)_{k}=k$!

Example
$E_{q}(z):=\sum_{k=0}^{\infty} \frac{z^{k}}{(\varepsilon ; i)_{k}}=\frac{1}{(z ; i)_{\infty}}$ "discovay" is an an ing Emden's trick
We show the sum converges fin $|z|<1$ (provided $|q|<1$)
Lat $t_{16}=\frac{z^{k}}{(\varepsilon ; \tau)_{1 k}}$
$\left|\frac{t_{k+1}}{t_{k}}\right|=\left|\begin{array}{ll}z^{k+1} & (1-\varepsilon) \cdots\left(1-\varepsilon^{k}\right) \\ z^{k} & (1-\varepsilon) \cdots\left(1-\varepsilon^{k}\right)\left(1-\varepsilon^{k+1}\right)\end{array}\right|$
$\begin{aligned} & \quad=\left\lvert\, z \frac{1}{1-q^{k+1} \mid}\right. \rightarrow|z| \text { Whim }_{k \rightarrow \infty} \\ & \quad \text { became } i^{k H} \rightarrow 0\end{aligned}$
By whit kos, $\sum t_{k}$ canvases other $|z|<1$

$$
\begin{aligned}
& 4 \text { we replace } z b^{b} z(1-q) \\
& E_{q}(z(1-q))=\sum_{k=1}^{\infty} \frac{z^{k}(1-\varepsilon)^{k}}{(\varepsilon ; \tau)_{k}}
\end{aligned}
$$

$\lim _{q \rightarrow 1} \frac{z^{k}(1-q)^{k}}{(\varepsilon ; \varepsilon)_{k}}=\lim _{q \rightarrow 1} \frac{z^{k}(1-\varepsilon)^{k}}{(1-\varepsilon)\left(1-q^{2}\right) \ldots\left(1-\varepsilon^{k}\right)}$

$$
\lim _{\{\rightarrow 1} \frac{z^{k}}{k!}\left(\lim _{q \rightarrow 1} \frac{1-q^{a}}{1-q}=a\right)
$$

$E_{q}(z) \rightarrow \sum_{k=0}^{\infty} \frac{z^{k}}{k!}=e^{z} \quad$ (termite)
We say $\begin{aligned} E_{\varepsilon}(z) \text { is } & q \text {-analogue of } e^{z} . \\ & \bar{L} . \\ & \text { there are more q-anelognes }\end{aligned}$
This is actually a special case of the q-binmial
hm. 2
How to green Necutirs Binimid theorem
Finite for:

$(1+x)^{n}=\sum_{k=1}^{n}\binom{n}{k} x^{k} \quad\binom{n}{k}=0$
LHS mako sengeit n is ruploeed by a -reel/ ${ }^{\text {complext. }}$.
$(1+x)^{a} \rightarrow{ }_{a} \exp l_{y}(\underbrace{(1+x)}$

$$
\begin{aligned}
&= \sum_{k=0}^{\infty}\binom{n}{k} x^{k} \\
&=\sum_{k=0}^{\infty} n \frac{n(n-1) \cdots(n-k+1)}{k!} x^{k} \\
& \sim \sum_{k=1}^{\infty} a(a-1) \cdots(c-k+1) \\
& m! \\
&=(1+x)^{a}
\end{aligned}
$$

The senies conveges fin $|x|<1$ Outlime a proof in the exencitis

$$
(1+x)^{a}=\sum_{k=1}^{\infty} \frac{(-a)(-a+1) \cdots(-a+k-1)}{k!}(-x)^{k}
$$

$$
=\sum_{k=0}^{\infty} \frac{(-\alpha)_{k}}{k!}(-x)^{k} .
$$

$$
\frac{(-b ; 2)_{\infty}}{(a ; 2)_{\infty}}=\sum_{k=0}^{\infty} \frac{(-b / a ; q)_{k}}{(2 ; 1)_{k}} a^{k}
$$

Profo (Remencyion) considu

$$
\begin{aligned}
& F(a, b, z)=\frac{(b z ; \varepsilon)_{\infty}}{(a z ; \varepsilon)_{\infty}}=\prod_{k=0}^{\infty} \frac{\left(1-b z q^{k}\right)}{\left(1-a z q^{k}\right)} \\
& \begin{array}{l}
\text { expand. } \\
\text { as a FPS in } z
\end{array} \\
& (1-a z) F(a, b, z)=(1-b z) \quad F(a, b, z q) \\
& (1-c z)\left(a_{0}+c_{1} t+\cdots\right)=(1-b r)\left(a_{0}+c_{1} t q+c_{2} z^{2} q^{2}+\cdots\right) \\
& \text { compare coefficients of } z^{k} \text { on bititsides, } k>0 \\
& a_{k}-a a_{k-1}=q^{k} a_{k}-b a_{k-1} q^{k-1} \\
& a_{k}\left(1-q^{k}\right)=\left(a-b q^{k-1}\right) a_{k-1}=\left(1-b q^{k-1} / a\right) a_{k-1} \\
& a_{c}=\frac{1-\varepsilon^{k-1} /}{1-q^{k}} a^{a_{k}=1} \\
& \begin{aligned}
& \left(1-b \frac{\left.\varepsilon^{k-1} / a\right)\left(1-b q^{k-2} / a\right) a^{2} a_{k-2}}{\left(1-\varepsilon^{k}\right)\left(1-\varepsilon^{k-1}\right)}\right.
\end{aligned} \\
& =\frac{\left(1-b i^{k-1} / a\right) \cdots(1-b / a)}{\left(1-\varepsilon^{k}\right) \cdots(1-q)} a^{k} a_{0}
\end{aligned}
$$

$$
\text { But } c_{0}=1 \quad \text { (why?) }
$$

So we get (as FPS)
$F(a, b, z)=\frac{(b \not ; j)_{\infty}}{(a z ; l)_{\infty}}=$

$$
\sum_{k=1}^{\infty} \frac{(b / a j \varepsilon)_{k}}{(\tau ; \tau)_{k}} a^{k} z^{k}
$$

The panameter z is nit muded

$$
\begin{aligned}
& \text { Lela } a \rightarrow a / z, b \rightarrow-b / z \\
& \frac{(-b ; \varepsilon)_{\infty}}{(a ; \varepsilon)_{\infty}}=\sum_{k=1}^{\infty} \frac{(-b / a j \varepsilon)_{k}}{(\varepsilon ; c)_{k}} a^{k}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Rencel: Profy wolls as onalytic idulity } \\
& \text { where }|a|<1 \text { (forserin) }-1|z|<1
\end{aligned}
$$

bolt parducto and scric.

Uswelly 9 -hinomid therem is witten a

$$
\frac{(a z ; i)_{\infty}}{(z ; i)_{\infty}}=\sum_{k=0}^{\infty} \frac{(c ; 2)_{1}}{(q ; \imath)_{1 .}} \tau^{k}
$$

$$
|z|<1,|z|<1 .
$$

providad denominetors ane not- 0 .
Fact: $(z ; i)_{\infty}=0$ onb when $z=q^{0}, \tau^{1}, \tau^{2}$,
Prove (1alu).

Example: suppx $a=q^{-n}, n \geqslant 0$.

$$
\begin{aligned}
& \frac{\left(q^{-n} z ; q\right)_{\infty}}{(z ; q)_{\infty}}=\left.\sum_{k=0}^{\infty} \frac{\left(q^{-n} ; q\right)_{k}}{(q ; i)_{k}}\right)^{k} \\
&\left(q^{-n} ; \varepsilon\right)_{k}=\left(1-q^{-n}\right)\left(1-\varepsilon^{-n+1}\right) \ldots \\
&\left(1-q^{-n+1}\right)
\end{aligned} \quad \begin{aligned}
& =0 \text { sten } k>n
\end{aligned}
$$

Sum becomes a terminatiry sum

$$
\frac{d}{\left(1-q^{-n} t\right)\left(1-\varepsilon^{-n+1}\right) \ldots} \underset{(1-z)^{1}}{ }=\sum_{k=u}^{n} \frac{\left(\varepsilon^{-n}: \tau\right)_{k}}{(\varepsilon ; \tau)_{k}} z^{k}
$$

Ruplask z by $z q^{n}$

$$
\begin{aligned}
& (1-z)(1-z q) \cdots\left(1-z q^{n-1}\right)=\sum_{k=0}^{n} \frac{\left(q^{-n} ; q\right)_{4}}{(q ; l)_{1}} z^{k} q^{n k} \\
& \text { Ex } \quad=\sum_{k=0}^{n} \frac{(\varepsilon ; \varepsilon)_{k}(-1)^{k} z^{k}}{(\varepsilon ; \varepsilon)_{k}(q ; \varepsilon)_{n-k}} \\
& q \rightarrow 1 \\
& (1-z)^{n}=\sum_{k=0}^{n}\binom{n}{k}(-z)^{k} \leftarrow_{\text {Sinomid }}^{\leftarrow} \\
& \text { Theorum. }
\end{aligned}
$$

